Analysis of the epitranscriptome with ion-pairing reagent free oligonucleotide mass spectrometry


Felix Hagelskamp, Stefanie Kellner

Methods in Enzymology, 2021, Volume 658, Pages 111135

RNA modifications gain growing attention as a new frontier in the life sciences but with the rise of RNA vaccines also in biomedical drug development. Impeccable characterization of RNA modifications within their sequence context remains an analytical challenge. Oligonucleotide mass spectrometry (ON-MS), an approach similar to bottom-up proteome analysis, is capable of defining a short 5-15 nucleotide sequence context of an RNA modification while delivering information on the chemical character of the modified nucleotide. Commonly, ON-MS requires the use of ion pairing reagents for ON separation which is not compatible with most other MS-based applications and only few laboratories run dedicated MS instruments for the task. Here, we present an ON-MS technique which is independent of ion pairing reagents and can be used on any available mass spectrometer without risking its sensitivity for other analytes. In this chapter, we describe the experiments necessary for ON-MS method development, ON-MS application to native and synthetic RNAs and finally a guideline for data analysis.