Aza-SAHA Derivatives Are Selective Histone Deacetylase 10 Chemical Probes That Inhibit Polyamine Deacetylation and Phenocopy HDAC10 Knockout
2022-10-06
Raphael R. Steimbach, Corey J. Herbst-Gervasoni, Severin Lechner, Tracy Murray Stewart, Glynis Klinke, Johannes Ridinger, Magalie N. E. Géraldy, Gergely Tihanyi, Jackson R. Foley, Ulrike Uhrig, Bernhard Kuster, Gernot Poschet, Robert A. Casero, Jr., Guillaume Médard, Ina Oehme, David W. Christianson, Nikolas Gunkel, and Aubry K. Miller
J. Am. Chem. Soc. 2022, 144, 41, 18861–18875, 2022
We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group (“aza-scan”) into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.
Speaker: Prof. Dr. Thomas Carell
Ludwig-Maximilians-Universität München
Institut für Chemische Epigenetik (ICEM)
Department of Chemistry
Office:
Würmtalstrasse 201
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77750
Fax: +49 (0)89 2180-77756
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Managing Director: Dr. Oliver Baron
Institute for Chemical Epigenetics Munich (ICEM)
Ludwig-Maximilians-Universität München
Butenandtstr. 5 - 13
81377 Munich Germany
Phone: +49 (0)89 2180-77661
Fax: +49 (0)89 2180-77651
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Secretary: Birgit Carell
Institute for Chemical Epigenetics Munich (ICEM)
Office:
Würmtalstrasse 201, Haus L - EG / Room: 007
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77751
Fax: +49 (0)89 2180-77881
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Prof. Dr. Lena Daumann
LMU Munich
Department of Chemistry
Butenandtstr. 5 - 13
House D, Room 3.075
81377 Munich, Germany
Phone: +49 89 2180 77486
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr. Sabine Schneider
LMU Munich
Institute for Chemical Epigenetics
Butenandtstr. 5 - 13
House L
81377 Munich, Germany
Phone: +49 89 2180 77716
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr. Martin Sumser (Coordinator)
LMU Munich
Institute for Chemical Epigenetics
Butenandtstr. 5 - 13
House L
81377 Munich, Germany
Phone: +49 89 2180 77765
This email address is being protected from spambots. You need JavaScript enabled to view it.
Contact IRTG 1309 related
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.