Potent hydroxamate-derived compounds arrest endodyogeny of Toxoplasma gondii tachyzoites
2024-04-01
Carlla Assis Araujo-Silva; Katharina Vögerl, Ferdinand Breu, Manfred Jung, Andreia Luiza Oliveira Costa, Wanderley De Souza, Franz Bracher , Erica S. Martins-Duarte, Rossiane C. Vommaro
Experimental Parasitology, 259, 108727, 2024
Toxoplasmosis is a zoonosis that is a worldwide health problem, commonly affecting fetal development and immunodeficient patients. Treatment is carried out with a combination of pyrimethamine and sulfadiazine, which can cause cytopenia and intolerance and does not lead to a parasitological cure of the infection. Lysine deacetylases (KDACs), which remove an acetyl group from lysine residues in histone and non-histone proteins are found in the Toxoplasma gondii genome. Previous work showed the hydroxamate-type KDAC inhibitors Tubastatin A (TST) and Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) were effective against T. gondii. In the present study, the effects of three hydroxamates (KV-24, KV-30, KV-46), which were originally designed to inhibit human KDAC6, showed different effects against T. gondii. These compounds contain a heterocyclic cap group and a benzyl linker bearing the hydroxamic acid group in para-position. All compounds showed selective activity against T. gondii proliferation, inhibiting tachyzoite proliferation with IC50 values in a nanomolar range after 48h treatment. Microscopy analyses showed that after treatment, tachyzoites presented mislocalization of the apicoplast, disorganization of the inner membrane complex, and arrest in the completion of new daughter cells. The number of dividing cells with incomplete endodyogeny increased significantly after treatment, indicating the compounds can interfere in the late steps of cell division. The results obtained in this work that these new hydroxamates should be considered for future in vivo tests and the development of new compounds for treating toxoplasmosis.
Speaker: Prof. Dr. Thomas Carell
Ludwig-Maximilians-Universität München
Institut für Chemische Epigenetik (ICEM)
Department of Chemistry
Office:
Würmtalstrasse 201
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77750
Fax: +49 (0)89 2180-77756
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Management: Dr. Nada Raddaoui
Institute for Chemical Epigenetics Munich (ICEM)
Office:
Würmtalstrasse 201, Building L, Room 03.004
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77755
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Secretary: Birgit Carell
Institute for Chemical Epigenetics Munich (ICEM)
Office:
Würmtalstrasse 201, Building L, Room 00.007
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77751
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
website support: Martina Schuster
Prof. Dr. Lena Daumann
LMU Munich
Department of Chemistry
Butenandtstr. 5 - 13
House D, Room 3.075
81377 Munich, Germany
Phone: +49 89 2180 77486
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr. Sabine Schneider
LMU Munich
Institute for Chemical Epigenetics
Butenandtstr. 5 - 13
House L
81377 Munich, Germany
Phone: +49 89 2180 77716
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr. Martin Sumser (Coordinator)
LMU Munich
Institute for Chemical Epigenetics
Butenandtstr. 5 - 13
House L
81377 Munich, Germany
Phone: +49 89 2180 77765
This email address is being protected from spambots. You need JavaScript enabled to view it.
Contact IRTG 1309 related
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.