Aromatic Amino Acid Hydroxylases as Off-Targets of Histone Deacetylase Inhibitors
2024-11-11
Anne Baumann, Niklas Papenkordt, Dina Robaa, Peter D. Szigetvari, Anja Vogelmann, Franz Bracher, Wolfgang Sippl, Manfred Jung, and Jan Haavik
ACS Chem. Neurosci. 2024, 15, 4143−4155
The aromatic amino acid hydroxylases (AAAHs) phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylases 1 and 2 are structurally related enzymes that contain an active site iron atom and depend on tetrahydrobiopterin (BH4) as cosubstrate. Due to their important roles in synthesis of serotonin, dopamine, noradrenaline, and adrenaline and their involvement in cardiovascular, neurological, and endocrine disorders, AAAHs have been targeted by substrate analogs, iron chelators, and allosteric ligands. Phenylalanine hydroxylase is also off-target of the histone deacetylase (HDAC) inhibitor panobinostat. To systematically explore the binding of HDAC inhibitors to AAAHs, we screened a library of 307 HDAC inhibitors and structural analogs against tryptophan hydroxylase 1 using a fluorescence-based thermal stability assay, followed by activity assays. Selected hits were enzymatically tested against all four purified human AAAHs. Cellular thermal shift assay was performed for phenylalanine hydroxylase. We show that panobinostat and structurally related compounds such as TB57, which similarly to panobinostat also contains a cinnamoyl hydroxamate, bind to human AAAHs and inhibit these enzymes with high selectivity within the class (panobinostat inhibition (IC50): phenylalanine hydroxylase (18 nM) > tyrosine hydroxylase (450 nM) > tryptophan hydroxylase 1 (1960 nM). This study shows that panobinostat and related hydroxamic acid type HDAC inhibitors inhibit all AAAHs at therapeutically relevant concentrations. Our results warrant further investigations of the off-target relevance of HDAC inhibitors intended for clinical use and provide directions for new dual HDAC/AAAH and selective AAAH inhibitors. These findings may also provide a new mechanistic link between regulation of histone modification, AAAH function, and monoaminergic neurotransmission.
Speaker: Prof. Dr. Thomas Carell
Ludwig-Maximilians-Universität München
Institut für Chemische Epigenetik (ICEM)
Department of Chemistry
Office:
Würmtalstrasse 201
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77750
Fax: +49 (0)89 2180-77756
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Management: Dr. Nada Raddaoui
Institute for Chemical Epigenetics Munich (ICEM)
Office:
Würmtalstrasse 201, Building L, Room 03.004
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77755
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Secretary: Birgit Carell
Institute for Chemical Epigenetics Munich (ICEM)
Office:
Würmtalstrasse 201, Building L, Room 00.007
81377 Munich
Germany
Mailing address:
Butenandtstr. 5 - 13
81377 Munich
Germany
Phone: +49 (0)89 2180-77751
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
website support: Martina Schuster
Prof. Dr. Lena Daumann
LMU Munich
Department of Chemistry
Butenandtstr. 5 - 13
House D, Room 3.075
81377 Munich, Germany
Phone: +49 89 2180 77486
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr. Sabine Schneider
LMU Munich
Institute for Chemical Epigenetics
Butenandtstr. 5 - 13
House L
81377 Munich, Germany
Phone: +49 89 2180 77716
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr. Martin Sumser (Coordinator)
LMU Munich
Institute for Chemical Epigenetics
Butenandtstr. 5 - 13
House L
81377 Munich, Germany
Phone: +49 89 2180 77765
This email address is being protected from spambots. You need JavaScript enabled to view it.
Contact IRTG 1309 related
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.