NAIL-MS reveals tRNA and rRNA hypomodification as a consequence of 5-fluorouracil treatment


2025-02-25

Maximilian Berg, Chengkang Li, Stefanie Kaiser

Nucleic Acids Research, Volume 53, Issue 4, 2025

https://doi.org/10.1093/nar/gkaf090

Recent studies have investigated RNA modifications in response to stressors like chemical agents, including the anticancer drug 5-fluorouracil (5-FU). Traditionally, 5-FU’s mechanism of action was believed to involve inhibition of thymidylate synthase, leading to thymidine depletion and cancer cell death. However, recent findings suggest that ribosome collisions and defects in ribosomal RNA (rRNA) processing drive 5-FU toxicity, potentially through RNA writer inhibition. To explore the effects of 5-FU on rRNA and transfer RNA (tRNA) modifications, we exposed HEK293T cells to 5-FU and quantified key RNA modifications. We found 55% and 40% reduction in 5-methyluridine and pseudouridine (Ψ), respectively, in tRNAs, but only minor changes in rRNA. Using nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), we identified that pre-existing tRNA and rRNA retained their modification profiles, while newly synthesized RNAs lost various modifications. In addition, new tRNAs exhibited modification reprogramming, particularly important for cell survival after 5-FU removal. In rRNA, we observed reduced levels of mature rRNA, with hypomodification in newly transcribed mature rRNA, particularly in Ψ and ribose methylations. In summary, we observe RNA hypomodification in both tRNA and rRNA due to 5-FU, which might be the molecular basis of 5-FU’s mechanism of action.